Energy Peak: Back to the Galactic Center GeV Gamma-ray Excess

Doojin Kim

Brookhaven Forum 2015, Upton, NY, Oct. 8, 2015

Introduction

- Existence of dark matter
 - □ Dark Matter (DM): ~25% of our universe
 - ☐ Evidence (e.g., rotation curve)
 - ☐ Known properties
 - Gravitationally interacting, not hot, not short-lived, not baryonic, neutral
 - Compelling paradigm, but no DM particle in the SM

Introduction

- Dark matter detection
 - ☐ Assuming that dark matter is interacting with the known particles (Standard Model)...

Introduction

- GC gamma-ray excess
 - ☐ Continuum bump signature
 - ☐ Typical DM interpretation
 - DM pair annihilation into 2 (unstable) SM which further goes through secondary processes to stable SM particles
 [Goodenough and Hooper (2009)]
 - Shape information (including the peak position) is highly model-dependent

- Why energy peak?
 - □ With DM interpretation in mind, I propose alternative mechanisms based on the observation of the "energy-peak" in collider physics to explain GC GeV gamma-ray excess (cf. other explanations by astrophysical activities such as millisecond pulsars, unresolved point-like sources are available)
 - □ Why energy peak?
 - Energy is the only available quantity (vs. large multiplicity, momentum w.r.t. the beam line in collider events)
 - Unique morphological features irrespective of underlying DM model details (vs. highly model-dependent in the standard interpretation)

- Existence of energy peak: a quick review
 - ☐ A simple 2-body decay of a heavy resonance *B* into *A* and *massless* visible *a*

- Energy of visible particle *a* is **monochromatic** and **simple** function of masses in the rest frame of particle
- \square E^* , m_A known \rightarrow measurement of m_B , vice versa
- Great to be on this **special** frame!

- Existence of energy peak: a quick review
 - ☐ Energy (not a Lorentz-invariant) of particle *a* should be Lorentz-transformed

☐ Energy of particle *a* should be Lorentz-transformed!

$$E = E^* \gamma (1 + \beta \cos \theta^*)$$

 \square No longer δ -functionlike spectrum, but a function of

 γ , θ^* \rightarrow becoming a distribution due to variation in them

→ information **loss**?!

- Existence of energy peak: a quick review
- ☐ Energy (not a Lorentz-invariant) of particle *a* should be Lorentz-transformed

☐ Energy of particle *a* should be Lorentz-transformed!

$$E = E^* \gamma (1 + \beta \cos \theta^*)$$

□ No longer δ-functionlike spectrum, but a function of γ , θ^* → becoming a distribution due to variation in them → information loss?!

- Existence of energy peak: a quick review
 - □ Lorentz transformation: $E = E^* \gamma (1 + \beta \cos \theta^*)$
 - ☐ Unpolarized/scalar mother particles
 - \checkmark cos θ^* becomes flat \to *E* is also flat (simple chain rule)

- Existence of energy peak: a quick review
 - \square Lower bound (upper bound) smaller (bigger) than E^* (for any boost)
 - ✓ No other *E* gets larger contribution from a given boost than does $E = E^*$
 - ✓ **No other** *E* is contained in **every** rectangle
 - \square Asymmetric on linear E (symmetric on logarithmic E) with respect to E^*

- Existence of energy peak: a quick review
 - ☐ Distribution in E: summing up the contributions from all relevant boost factors
 - ✓ "Stacking up" rectangles weighted by boost distribution (Lebesque-type integral)
 - ✓ Energy distribution has a unique **peak** at $E = E^*$ [Agashe, Franceschini, and **DK** (2012)]

☐ Details of the boost distribution (depending on production mechanism, PDFs, mother masses...) **NOT** matters

Analysis: introduction of an ansatz

- Generic distributions are obtained by an integration over the boost factor with **unknown** boost distribution $g(\gamma)$, generally, not doable
- \square Nevertheless, there are common features of f(E)
 - **\Delta** Even under $E/E^* \leftrightarrow E^*/E$
 - riangle Maximized at $E = E^*$
 - ❖ Vanishing as *E* goes to 0/∞
 - \diamond Returning a δ -function for some limiting parameter choice
- ☐ Proposal of an ansatz:

$$f(E) = \frac{1}{K_1(w)} \exp\left[-\frac{w}{2} \left(\frac{E}{E^*} + \frac{E^*}{E}\right)\right]$$

$$f(E) = \int_{\frac{1}{2}\left(\frac{E}{E^*} + \frac{E^*}{E}\right)}^{\infty} d\gamma \frac{g(\gamma)}{2E^*\sqrt{\gamma^2 - 1}}$$

Top mass measurement by CMS

Available on the CERN CDS information server

CMS PAS TOP-15-002

CMS Physics Analysis Summary

Contact: cms-pag-conveners-top@cern.ch

2015/09/16

Measurement of the top-quark mass from the b jet energy spectrum

The CMS Collaboration

Many more collider studies with energy-peak

Distinguishing DM stabilization symmetries [Agashe, Franceschini, DK, and Wardlow (2012)]
Distinguishing signal from background in searching for superpartners of the top quark [Low
(2013)]
Mass measurement of new particles in 2-step on-shell cascade of 2-body decays [Agashe,
Francheschini, and DK (2013)]
Mass measurement of Kaluza-Klein gravitons in warped RS models [Chen, Davoudiasl, and DK
(2014)]
Mass measurement of new particles in 3-body decays [Agashe, Franceschini, DK, and Wardlow (2015)]
Mass measurement of new particles in the case with massive visible particles [Agashe,
Franceschini, Hong, and DK, in progress]
Top quark mass measurement in NLO [Agashe, Franceschini, DK, and Schulze, in progress]

- How to obtain broadly distributed energy spectrum?
- □ A lesson from collider physics: getting through multiple cascade decays easily generates a continuum energy spectrum
 - Assuming a simple event topology (vs. collection of cascade decays, bremsstrahlung, Compton scattering, etc.)

- ☐ Simplest and conventional model
- ☐ Featured by a sharp peak

- ☐ Introducing on-shell mediator state
- ☐ Featured by a box-like distribution

- ☐ Introducing an on-shell intermediate state before the state decaying into two photons
- Developing a plateau or a peak depending on model details
- ☐ Morphologically constrained: analytic expression for the shape available

Application: GC GeV Excess

• Results: $40^{\circ} \times 40^{\circ}$

 \Box cf. arXiv:1402.6703 $\rightarrow \chi^2/\text{d.o.f.} = 64/20$ with $m_{DM} = 43.0$ GeV

Application: GC GeV Excess

Results: Full sky

 \Box cf. arXiv:1402.6703 $\rightarrow \chi^2/\text{d.o.f.} = 44/20$ with $m_{DM} = 36.6$ GeV

Take-home Lesson

Summary

- □ Fit results with **reasonable chi square** (i.e., χ^2 /d.o.f ~1) suggest that the GC GeV gammaray energy spectrum has a **unique structure** (i.e., symmetric with respect to the peak in logarithmic E_{γ})
- ☐ The **peak position** is identified as **half the mass of an on-shell mediator** decaying into photons
- ☐ Such structural features are easily realized by a 2-body decay of the on-shell mediator into 2 photons
- □ Continuum energy spectrum can be realized when the on-shell mediator comes along with a sequential cascade decay
- ☐ (In addition,) **non-trivial dark sector** could be favored to accommodate the above observations

Thank you!

Back-up

More on DM scenario

- Two dark matter particles introduced, heavier one (χ_h) and lighter one $(\chi_l) \to \text{non-trivial}$ dark sector (e.g., boosted DM [Agashe, Cui, Nevib, and Thaler (2014); Berger, Cui, and Zhao (2014); Kong, Mohlabeng, and Park (2014)])
- Heavier one: dominant DM component, no direct coupling to SM → relic abundance realized by Assisted Freeze-out [Belanger and Park (2011)]
- ☐ Lighter one: **subdominant** DM component, **direct coupling** to SM
- \Box a: dark pion or axion-like particle
- ☐ In general, various DM models are allowed as far as experimental constraints are satisfied: more detailed DM model building in progress [with Kong and Park]

Back-up

Unweighted energy spectrum

